Share This Post

Picture © B. Poncelet

1. The  lifetime  of  a  mechanical  lifter  is  normally  distributed  with  a  mean  of  100  hours  and  a  standard deviation of 3 hours. What is the reliability of the lifter at 106 hours  ? 

A. 0.0228                       B. 0.0570                       C. 0.9430                    D,  0.9772

2. A full factorial design of experiments has four factors. The first factor has two levels, the second factor has three levels, the third factor has two levels, and the final factor has four levels. How many runs are required for this analysis ?

A. 16     B. 48     C. 192     D. 256

3. On the basis of the fault tree, what is the likelihood of the top event occurring?

A. 0.0050            B. 0.2600                C. 0.3000              D. 0.5200

 4. Assuming  perfect switching  and  perfect  starting,  which  of  the  following  systems  has  the  longest  mean life if each system consists of n units with identical reliability ?

A. A series system.      B. A parallel system. 

C.  A k out of n system.    D. A cold standby system.

5. Which of the following is an appropriate use for experimental design ?

A. Establishing product requirements.             

B. Developing a fault-tree analysis.

C. Ensuring the robust design of a product.     

D. Analyzing customer complaint reports.

 6. The primary aim of sequential-life testing is to determine:

A. The probability density function of failures.

B. The mean time between failures (MTBF).

C. Whether a lot meets the reliability goal.

D. Whether the stress-level variation is significant

7. A small sample from a product population is subjected to multiple levels of elevated stress. Which of the following could be used to model the life of the product ?

A. Poisson process.   B. Pascal expansion.

C. Pareto rule.           D. Inverse power law.

8. A component fails on the average of once every 4 years with 75% of the failures observed to occur during stormy weather. If there are 12 hours of stormy weather to every 240 hours of good weather, what are the failure rates for stormy and good weather, respectively ?

A. λ(Stormy) = 3.939 failure/yr, λ(Good) = 0.0656 failure/yr.

B. λ(Stormy) = 4.202 failure/yr, λ(Good) = 0.0525 failure/yr.

C. λ(Stormy) = 6.594 failure/yr, λ(Good) = 0.0458 failure/yr.

D. λ(Stormy) = 20.16 failure/yr, λ(Good) = 0.0403 failure/yr.

9. Given a reliability growth test in progress having accumulated 4 failures during 5000 test hours. Assume a growth rate of 0.3, what is the expected MTBF at 25,000 hours ?

A. 1250 hrs     B. 1895 hrs     C. 2026 hrs     D. 3856 hrs

10. In a certain application, two identical transducers are used to measure the vacuum in a system. The system is considered to have failed if either of the vacuums read by the transducers varies from the standard by more than 10mm Hg. Which of the following is the correct reliability logic block diagram for the transducer assembly ?

Answer A

More To Explore


Get Your ASQ Reliability Engineer CRE education at RAMS

A new benefit is being offered to attendees at no additional cost to registration! An additional track has been added that will be dedicated to delivering ASQ Certified Reliability Engineer (CRE) Preparatory Training in sessions aligned with the same times of the regular RAMS sessions for paper presentations and tutorials. The sessions will be broken


The 69th Annual Reliability and Maintainability Symposium

What You Can Look Forward to at RAMS 2023:  The RAMS Program Committee has lined up an outstanding program for you that will feature: — 32 paper sessions from industry professionals, leading researchers, and students;  — 4 panel sessions featuring industry and government leaders; — 22 tutorials supporting in-depth learning.  RAMS 2023 offers a unique combination

Scroll to Top